Swift Observation of GRB 070224

J. L. Racusin (PSU), J. Tueller (NASA/GSFC), S. Holland (CRESST/GSFC/USRA), M. Chester (PSU), M. Goad (U. Leicester), O. Godet (U. Leicester), F. Marshall (NASA/GSFC) for the Swift Team

1 Introduction

BAT triggered on GRB 070224 at 20:27:58 UT (Trigger 261880) (Racusin, et al., GCN Circ. 6137). This was a rate-trigger on a intermediate length burst with $T_{90} = 34 \pm 1$ sec. Swift slewed to this burst immediately and XRT began follow-up observations at T + 143 sec, and UVOT at T + 132 sec.

Our best position is the astrometrically corrected XRT location $RA(J2000) = 179.02792 deg \ (11h56m6.7s)$, $Dec(J2000) = -13.3304 deg \ (-13d19'49.6'')$ with an error radius of 2.6 arcsec (90% confidence, including boresight uncertainties).

2 BAT Observation and Analysis

Using the data set from T-20 to T+50 sec, further analysis of BAT GRB 070224 has been performed by the Swift team (Tueller, et al., GCN Circ. 6141). The BAT ground-calculated position is $RA(J2000) = 178.987deg \ (11h55m57.0s)$, $Dec(J2000) = -13.356deg \ (-13d21'20.1'')$ with an error radius of 2.0 arcmin, (systematic and statistical, 90% containment). The partial coding was 100%.

The masked-weighted light curves (Fig.1) starts at trigger time T with two overlapping peaks, and returns to background at about T + 50 sec. $T_{90}(15 - 350keV)$ is 34 ± 1 (estimated error including systematics).

The time-averaged spectrum from T-13.8 to T+24.3 sec is best fitted by a simple power law model. This fit gives a photon index of 2.42 ± 0.30 . For this model the total fluence in the 15-150 keV band is $(3.1\pm0.5)\times10^{-7}ergs/cm^2$ and the 1-sec peak flux measured from T-13.76 sec in the 15-150 keV band is 0.3 ± 0.1 ph/cm²/sec. All the quoted errors are at the 90% confidence level.

3 XRT Observations and Analysis

Based on an accurate mapping between the XRT and UVOT detector coordinate systems, we have used the simultaneous UVOT V-band images to astrometrically correct (relative to stellar catalogues, e.g. USNO-B1) the XRT world coordinate system, and thereby refine the XRT position. We obtain a new XRT position at $RA(J2000) = 179.02792 deg \ (11h56m6.7s)$, $Dec(J2000) = -13.3304 deg \ (-13d19'49.6'')$ with an error radius of 2.6 arcsec (90% confidence, including boresight uncertainties, Racusin et al., GCN Circ. 6151). This position is 8.1 arcsec from the initial XRT position reported by Racusin et al., GCN Circ. 6137, 3.8 arcsec from the refined XRT position reported by Racusin et al., GCN Circ. 6143, and 2.0 arcsec from the optical afterglow, first reported by Thoene et al., GCN Circ. 6142.

The 0.3-10~keV light curve (Fig.2) can be modeled by a broken power-law with initial steep decline with a slope of 3.30 ± 0.31 , followed by a shallow slope of 0.66 ± 0.09 , beginning at $T+580\pm100~sec$ ($\chi^2/dof=0.6, dof=7$).

The first orbit of the X-ray lightcurve (combined WT & PC mode data) can be modeled with an absorbed power-law with photon index of 2.2 ± 0.3 . The NH column density is consistent with galactic column density, $4.1\times10^{20} cm^{-2}$. The average observed (unabsorbed) flux over $0.3-10 \ keV$ for this spectrum (spanning a time of 143-1371 seconds after the trigger) is $1.3\times10^{-11} \ (4.0\times10^{-11}) \ ergs/cm^2/sec$.

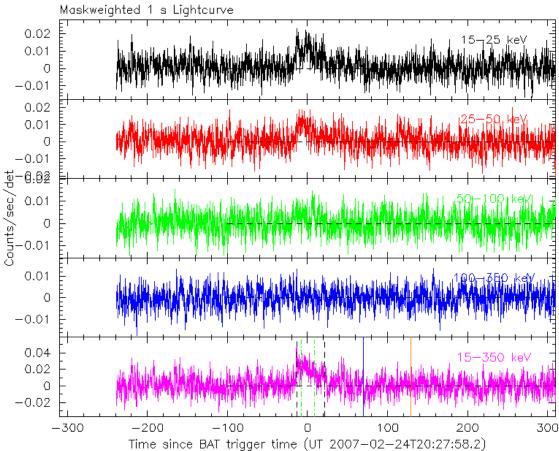


Figure 1: BAT Light curve. The mask-weighted light curve in the 4 individual plus total energy bands. The units are counts/sec/illuminated-detector and T_0 is 20:27:58 UT.

4 UVOT Observation and Analysis

The UVOT began observing the field of GRB 070224 132 sec after the initial BAT trigger (Racusin et al., GCN Circ. 6137). No new sources were detected in any of the UVOT observations within the XRT error circle. The 3-sigma upper limits for detecting a source anywhere inside the XRT error circle in the settling image, the finding chart images, and the co-added frames are summarized in Table 1.

GRB 070224

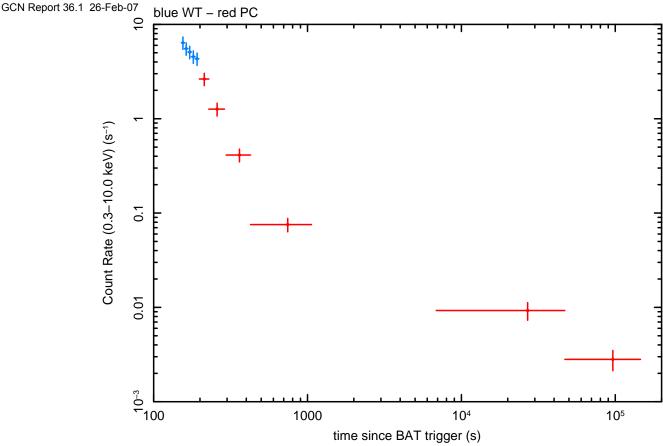


Figure 2: XRT Lightcurve. Counts/sec in the 0.3-10 keV band: Window Timing mode (red), Photon Counting mode (blue). The approximate conversion is $1 \text{ count/sec} = \sim 4.0 \times 10^{-11} \ ergs/cm^2/sec$.

Start	Stop	Exposure	3-Sigma UL
132	144	12	17.1
156	254	96	20.6
259	659	393	20.2
259	1367	1593	21.0
737	747	10	18.5
713	733	19	18.5
689	5512	132	19.8
665	833	39	18.3
766	785	19	18.2
154	962	304	21.3
35,712	126,303	1553	20.9
7159	128,636	1987	22.1
6954	93,932	1952	21.7
6750	145,987	4321	22.1
$12,\!574$	143,883	4621	22.5
29,833	122,852	4358	22.5
	132 156 259 259 737 713 689 665 766 154 35,712 7159 6954 6750 12,574	132 144 156 254 259 659 259 1367 737 747 713 733 689 5512 665 833 766 785 154 962 35,712 126,303 7159 128,636 6954 93,932 6750 145,987 12,574 143,883	132 144 12 156 254 96 259 659 393 259 1367 1593 737 747 10 713 733 19 689 5512 132 665 833 39 766 785 19 154 962 304 35,712 126,303 1553 7159 128,636 1987 6954 93,932 1952 6750 145,987 4321 12,574 143,883 4621

Table 1: Magnitude limits from UVOT observations. The values quoted above are not corrected for the expected Galactic extinction corresponding to a reddening of $E_{B-V} = 0.06$ mag towards the direction of the burst (Schlegel et al. 1998).