Swift Observations of GRB 120819A

A.P. Beardmore (U. Leicester), O.M. Littlejohns (U. Leicester) and F.E. Marshall (NASA/GSFC) for the Swift team

1. Introduction

Beardmore *et al.* (GCN Circ. 13681) reported the initial Swift results. At 13:10:14 UT, the Swift Burst Alert Telescope (BAT) triggered and located GRB 120819A (trigger=531428). Swift slewed immediately to the burst. **Table 1** contains the best reported positions from Swift. The latest XRT position can be viewed at http://www.swift.ac.uk/xrt_positions.

Malesani *et al.* (GCN Circ. 13683) reported the position from NOT for the optical afterglow of this GRB. **Table 2** is a summary of GCN Circulars about this GRB from observatories other than Swift.

Standard analysis products for this burst are available at http://gcn.gsfc.nasa.gov /swift gnd ana.html.

2. BAT Observations and Analysis

Analysis of the BAT data was reported by Sakamoto *et al.* (GCN Circ. 13689). The BAT ground-calculated position is RA, Dec = 235.887, -7.304 deg, which is RA(J2000) = 15h 43m 32.8s Dec(J2000) = -07d 18' 13.5'' with an uncertainty of 2.9 arcmin, (radius, sys+stat, 90% containment). The partial coding was 30%.

The mask-weighted light curve (**Figure 1**) shows multiple peaks starting at ~T-2 sec, with the largest peak at ~T+0 sec, and returning to baseline at ~T+180 sec. T₉₀(15-350 keV) is 71 ± 21 sec (estimated error including systematics).

The time-averaged spectrum from T+4.42 to T+82.88 sec is best fit by a simple power-law model. The power law index of the time-averaged spectrum is 1.49 \pm 0.23. The fluence in the 15-150 keV band is 1.4 \pm 0.2 x 10⁻⁶ erg cm⁻². The 1-sec peak photon flux measured from T+6.20 sec in the 15-150 keV band is 0.8 \pm 0.3 ph cm⁻² sec⁻¹. All the quoted errors are at the 90% confidence level.

The results of the batgrbproduct analysis are available at http://gcn.gsfc.nasa.gov/notices_s /531428/BA/.

3. XRT Observations and Analysis

Analysis of the XRT data was reported by Littlejohns *et al.* (GCN Circ. 13687). We have analysed 10 ks of XRT data for GRB 120819A, from 159 s to 23.0 ks after the BAT trigger. The data comprise 67 s in Windowed Timing (WT) mode with the remainder in Photon Counting (PC) mode.

The light curve (Figure 2) can be modelled with a power-law decay with a decay index of α =1.75 (+0.12, -0.09).

A spectrum formed from the WT mode data can be fitted with an absorbed power-law with a photon spectral index of 1.7 ± 0.4 . The best-fitting absorption column is $3.3 (+2.0, -1.5) \times 10^{21} \text{ cm}^{-2}$, in excess of the Galactic value of $8.9 \times 10^{20} \text{ cm}^{-2}$ (Kalberla et al. 2005). The counts to observed (unabsorbed) 0.3-10 keV flux conversion factor deduced from this

GCN Report 395.1 12-Oct-12

spectrum is 4.2×10^{-11} (6.0 x 10^{-11}) erg cm⁻² count⁻¹.

The results of the XRT team automatic analysis are available at http://www.swift.ac.uk /xrt products/00531428.

4. UVOT Observations and Analysis

Analysis of the UVOT data was reported by Marshall and Beardmore (GCN Circ. 13702). The Swift/UVOT began settled observations of the field of GRB 120819A 158 s after the BAT trigger. No optical afterglow consistent with the optical position (Malesani et al. GCN Circ. 13683) is detected in the initial UVOT exposures. **Table 3** gives preliminary magnitudes using the UVOT photometric system (Breeveld *et al.* 2011, AIP Conf. Proc., 1358, 373). No correction has been made for the expected extinction in the Milky Way corresponding to a reddening of E_{B-V} of 0.17 mag. in the direction of the GRB (Schlegel *et al.* 1998).

Figure 1. The BAT mask-weighted light curve in the four individual and total energy bands. The units are counts \sec^{-1} illuminated-detector⁻¹.

Figure 2. The XRT light curve.

RA	Dec	Error	Note	Reference
15 ^h 43 ^m 37.81 ^s	-07 ⁰ 18' 32.7"	1.8"	XRT-enhanced	Evans et al. GCN Circ. 13684
15 ^h 43 ^m 32.8 ^s	-07 ⁰ 18' 13.5"	2.9'	BAT-refined	Sakamoto <i>et al.</i> GCN Circ. 13689

Table 1. Positions from the Swift instruments.

Band	Authors	GCN Circ.	Observatory	Notes
Optical	Yurkov <i>et al.</i>	13682	MASTER	
Optical	Malesani <i>et al.</i>	13683	NOT	detection
Optical	Kuroda <i>et al.</i>	13685	MITSuME	upper limits
Optical	Kuroda <i>et al.</i>	13686	MITSuME	upper limits
Optical	Sudilovsky <i>et al.</i>	13688	GROND	detection
Optical	Quadri and Strabla	13690	Bassano Bresciano Obs.	
Optical	Gorbovskoy <i>et al.</i>	13691	MASTER	upper limits
Optical	Krugly <i>et al.</i>	13713		upper limits

Table 2. Summary of GCN Circulars from other observatories sorted by band and then circular number.

Filter	T_start(s)	T_stop(s)	Exp(s)	Mag
white _{FC}	158	308	147	>21.1
white	158	5439	541	>21.7
v	4214	22619	1278	>20.9
b	3598	11864	1164	>21.1
u	4829	17638	1858	>21.6
w1	4625	16836	1998	>21.4
m2	4418	22980	1629	>21.7
w2	4009	21706	1279	>21.8

Table 3. UVOT Observations. The start and stop times of the exposures are given in seconds since the BAT trigger. The preliminary $3-\sigma$ upper limits are given. No correction has been made for extinction in the Milky Way.

October 11, 2012