Swift Observations of GRB 130313A

B.P. Gompertz (U. Leicester), J.P. Osborne (U. Leicester) and T.A. Pritchard (PSU) for the Swift team

1. Introduction

At 16:08:11 UT, the Swift Burst Alert Telescope (BAT) triggered and located GRB 130313A (trigger=550906) (Gompertz *et al.* GCN Circ. 14293). Swift slewed immediately to the burst. At the time of the trigger, the initial BAT position was 117° from the Sun (7.8 hours West) and 136° from the 4%-illuminated Moon. **Table 1** contains the best reported positions from Swift, and the latest XRT position can be viewed at http://www.swift.ac.uk/xrt positions.

Table 2 is a summary of GCN Circulars about this GRB from observatories other than Swift.

Standard analysis products for this burst are available at http://gcn.gsfc.nasa.gov/swift_gnd_ana.html.

2. BAT Observations and Analysis

As reported by Barthelmy *et al.* (GCN Circ. 14296), the BAT ground-calculated position is RA, Dec = 236.438, -0.355 deg, which is RA(J2000) = 15h 45m 45.1s Dec(J2000) = -00d 21' 18.0" with an uncertainty of 2.6 arcmin, (radius, sys+stat, 90% containment). The partial coding was 82%.

The mask-weighted light curve shows a single pulse starting at \sim T+0.0, peaking at \sim T+0.1 s, and ending at \sim T+0.2 s. T₉₀(15-350 keV) is 0.26 ± 0.09 s (estimated error including systematics).

The time-averaged spectrum from T-0.02 to T+0.23 s is best fit by a simple power-law model. The power law index of the time-averaged spectrum is 1.37 ± 0.36 . The fluence in the 15-150 keV band is $3.1 \pm 0.7 \times 10^{-8}$ erg cm⁻². The 1-s peak photon flux measured from T-0.36 s in the 15-150 keV band is 0.5 ± 0.1 ph cm⁻² s⁻¹. All the quoted errors are at the 90% confidence level.

The results of the batgrbproduct analysis are available at http://gcn.gsfc.nasa.gov/notices s/550906/BA/.

3. XRT Observations and Analysis

Analysis of the initial XRT data was reported by Osborne *et al.* (GCN Circ. 14300). We have analysed 16 ks of XRT data for GRB 130313A, from 85 s to 52.6 ks after the BAT trigger. The data are entirely in Photon Counting (PC) mode.

The results of the XRT team automatic analysis are available at http://www.swift.ac.uk/xrt_products/00550906.

4. UVOT Observations and Analysis

The Swift/UVOT began settled observations of the field of GRB 130313A 81 s after the BAT trigger (Pritchard and Gompertz GCN Circ. 14314). No optical afterglow consistent with the XRT position (Osborne *et al.* GCN Circ. 14300) is detected in the initial UVOT exposures. **Table 3** gives preliminary magnitudes using the UVOT photometric system (Breeveld *et al.* 2011, AIP Conf. Proc., 1358, 373). No correction has been made for the expected extinction in the Milky Way corresponding to a reddening of E_{B-V} of 0.09 mag. in the direction of the GRB (Schlegel *et al.* 1998).

1 of 4 02/07/13 12:57

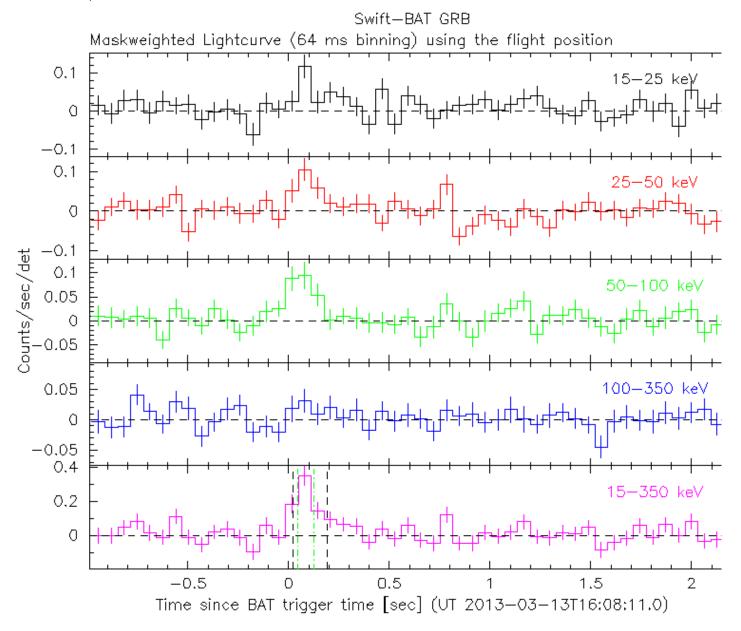


Figure 1. The BAT mask-weighted light curve in the four individual and total energy bands. The units are counts s^{-1} illuminated-detector⁻¹.

2 of 4 02/07/13 12:57

Swift/XRT data of GRB 130313A

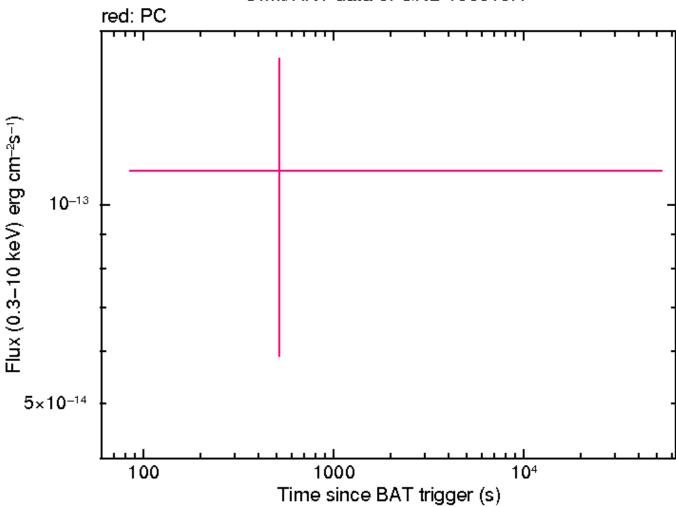


Figure 2. The XRT light curve.

RA	Dec	Error	Note	Reference
15 ^h 45 ^m 38.41 ^s	-00 ⁰ 22' 08.3"	4.8"	XRT-refined	Osborne <i>et al</i> . GCN Circ. 14300
15 ^h 45 ^m 45.1 ^s	-00 ⁰ 21' 18.0"	2.6'	BAT-refined	Barthelmy et al. GCN Circ. 14296

Table 1. Positions from the Swift instruments.

Band	IALITHORS	GCN Circ.	Subject	Observatory	Notes
Optical	Yurkov et al.	14294	MASTER-Net optical observations	MASTER	
Optical	Klotz <i>et al</i> .	114/95	Zadko observatory - Gingin optical observations	Zadko	
Optical	Xu <i>et al</i> .	14298	Weihai optical upper limit	IWAINAI	upper limits
Optical	Tello <i>et al</i> .	14299	simultaneous and follow-up optical	BOOTES-3	

3 of 4 02/07/13 12:57

	N Report 445.1 02-Jul-13 Xu <i>et al.</i>	14301	NOT optical upper limit	NOT	upper limits
Optical	de Ugarte Postigo <i>et</i> <i>al</i> .	14302	Optical observations from GTC	GTC	detection
Optical	D'Avanzo et al.	14307	TNG optical observations	TNG	
Optical	Butler et al.	14308	RATIR Optical and NIR Observations	RATIR	
Optical	Gorosabel <i>et al</i> .	14319	GTC early optical limits	GTC	upper limits
Optical	Volnova <i>et al</i> .	14321	optical upper limit in Mondy observatory	Mondy	upper limits
III INTICAL	Rumyantsev and Pozanenko	14322	optical upper limit in CrAO	CrAO	upper limits
Radio	Fong et al.	14318	5.8 GHz VLA upper limit	VLA	upper limits
X-ray	Gompertz and Page	14305	Fading X-ray Afterglow	,	

Table 2. Summary of GCN Circulars from other observatories sorted by band and then circular number.

Filter	T _{start} (s)	T _{stop} (s)	Exp(s)	Mag
white _{FC}	81	231	147	>20.6
u _{FC}	293	543	246	>20.3
white	81	17899	2332	>22.4
V	625	22348	1681	>20.4
b	550	16987	1327	>21.4
u	293	6955	697	>20.3
w1	674	6750	471	>20.9
m2	649	6545	413	>21.0
w2	600	18671	2110	>21.5

Table 3. UVOT Observations. The start and stop times of the exposures are given in seconds since the BAT trigger. The preliminary $3-\sigma$ upper limits are given. No correction has been made for extinction in the Milky Way.

March 18, 2013