# Swift Observations of GRB 130527A

B.P. Gompertz (U. Leicester), V. Mangano (INAF-IASFPA) and M.M. Chester (PSU) for the Swift team

### 1. Introduction

At 14:21:30 UT, the Swift Burst Alert Telescope (BAT) triggered and located GRB 130527A (trigger=556753) (Gompertz *et al.* GCN Circ. <u>14703</u>). Swift slewed immediately to the burst. At the time of the trigger, the initial BAT position was 121° from the Sun (7.7 hours West) and 27° from the 91%-illuminated Moon. **Table 1** contains the best reported positions from Swift, and the latest XRT position can be viewed at <u>http://www.swift.ac.uk/xrt\_positions</u>.

Table 2 is a summary of GCN Circulars about this GRB from observatories other than Swift.

Standard analysis products for this burst are available at <u>http://gcn.gsfc.nasa.gov/swift\_gnd\_ana.html</u>.

#### 2. BAT Observations and Analysis

As reported by Baumgartner *et al.* (GCN Circ. <u>14708</u>), the BAT ground-calculated position is RA, Dec = 309.282, -24.726 deg, which is RA(J2000) = 20h 37m 07.6s Dec(J2000) = -24d 43' 35.1" with an uncertainty of 1.1 arcmin, (radius, sys+stat, 90% containment). The partial coding was 10%.

The mask-weighted light curve shows many overlapping peakst starting at  $\sim$ T-10 s, peaking at  $\sim$ T+1 s, and ending at  $\sim$ T+170 s. T<sub>90</sub> (15-350 keV) is 44 ± 16 s (estimated error including systematics).

The time-averaged spectrum from T-2.9 to T+90.7 s is best fit by a simple power-law model. The power law index of the time-averaged spectrum is  $1.25 \pm 0.06$ . The fluence in the 15-150 keV band is  $1.2 \pm 0.04 \times 10^{-5}$  erg cm<sup>-2</sup>. The 1-s peak photon flux measured from T+0.06 s in the 15-150 keV band is  $20.1 \pm 1.4$  ph cm<sup>-2</sup> s<sup>-1</sup>. All the quoted errors are at the 90% confidence level.

The results of the batgrbproduct analysis are available at <u>http://gcn.gsfc.nasa.gov/notices\_s/556753/BA/</u>.

#### 3. XRT Observations and Analysis

Analysis of the initial XRT data was reported by Mangano *et al.* (GCN Circ. <u>14707</u>). We have analysed 5.9 ks of XRT data for GRB 130527A, from 94 s to 18.3 ks after the BAT trigger. The data comprise 203 s in Windowed Timing (WT) mode (the first 10 s were taken while Swift was slewing) with the remainder in Photon Counting (PC) mode. The enhanced XRT position for this burst was given by Evans *et al.* (GCN. Circ 14704).

The late-time light curve (**Figure 2**) (from T0+4.9 ks) can be modelled with a power-law decay with a decay index of  $\alpha$ =1.15 (+0.24, -0.23).

A spectrum formed from the WT mode data can be fitted with an absorbed power-law with a photon spectral index of  $1.70 \pm 0.09$ . The best-fitting absorption column is  $2.4 \pm 0.3 \times 10^{21}$  cm<sup>-2</sup>, in excess of the Galactic value of  $3.7 \times 10^{20}$  cm<sup>-2</sup> (Kalberla *et al.* 2005). The PC mode spectrum has a photon index of 1.67 (+0.16, -0.15) and a best-fitting absorption column of  $1.5 \pm 0.5 \times 10^{21}$  cm<sup>-2</sup>. The counts to observed (unabsorbed) 0.3-10 keV flux conversion factor deduced from this spectrum is  $4.5 \times 10^{-11}$  ( $5.5 \times 10^{-11}$ ) erg cm<sup>-2</sup> count<sup>-1</sup>.

A summalifeoffther PC2mbble spectrum is thus:

Total column:  $1.5 \pm 0.5 \times 10^{21} \text{ cm}^{-2}$ Galactic foreground:  $3.7 \times 10^{20} \text{ cm}^{-2}$ Excess significance:  $3.9 \sigma$ Photon index: 1.67 (+0.16, -0.15)

The results of the XRT team automatic analysis are available at <u>http://www.swift.ac.uk/xrt\_products</u> /00556753.

## 4. UVOT Observations and Analysis

The Swift/UVOT began settled observations of the field of GRB 130527A 113 s after the BAT trigger (Chester and Gompertz GCN Circ. <u>14715</u>). No optical afterglow consistent with the XRT position (Evans *et al.* GCN Circ. <u>14705</u>) is detected in the initial UVOT exposures. **Table 3** gives preliminary magnitudes using the UVOT photometric system (Breeveld *et al.* 2011, AIP Conf. Proc., 1358, 373). No correction has been made for the expected extinction in the Milky Way corresponding to a reddening of  $E_{B-V}$  of 0.04 mag. in the direction of the GRB (Schlegel *et al.* 1998).



Figure 1. The BAT mask-weighted light curve in the four individual and total energy bands. The units are counts  $s^{-1}$  illuminated-detector<sup>-1</sup>.



Figure 2. The XRT light curve.

| RA                                                 | Dec                        | Error | Note         | Reference                                        |
|----------------------------------------------------|----------------------------|-------|--------------|--------------------------------------------------|
| 20 <sup>h</sup> 37 <sup>m</sup> 06.32 <sup>s</sup> | -24 <sup>0</sup> 43' 30.6" | 1.8"  | XRT-enhanced | Evans <i>et al</i> . GCN Circ. <u>14705</u>      |
| 20 <sup>h</sup> 37 <sup>m</sup> 07.6 <sup>s</sup>  | -24 <sup>0</sup> 43' 35.1" | 1.1'  | BAT-refined  | Baumgartner <i>et al.</i> GCN Circ. <u>14708</u> |

Table 1. Positions from the Swift instruments.

| Band      | Authors                                | GCN<br>Circ. | Subject                                       | Observatory   | Notes           |
|-----------|----------------------------------------|--------------|-----------------------------------------------|---------------|-----------------|
| Optical   | Castro-Tirado <i>et</i><br><i>al</i> . | <u>14706</u> | BOOTES-2 & 3.5m CAHA opt/nIR observations     | BOOTES-2      |                 |
| Optical   | Butler <i>et al</i> .                  | <u>14709</u> | RATIR Optical and NIR<br>Observations         | RATIR         | upper<br>limits |
| Optical   | Cano <i>et al</i> .                    | <u>14710</u> | NOT optical counterpart                       | NOT           | detection       |
| Gamma-ray | Golenetskii <i>et</i><br><i>al</i> .   | <u>14720</u> | Konus-Wind observation                        | Konus-Wind    | detection       |
| Gamma-ray | Ueno <i>et al</i> .                    | <u>14727</u> | Suzaku WAM observation of the prompt emission | Suzaku<br>WAM | light curve     |

Table 2. Summary of GCN Circulars from other observatories sorted by band and then circular number.

| Filter              | T <sub>start</sub> (s) | T <sub>stop</sub> (s) | Exp(s) | Mag   |
|---------------------|------------------------|-----------------------|--------|-------|
| white <sub>FC</sub> | 113                    | 263                   | 147    | >21.2 |
| white               | 113                    | 1547                  | 392    | >21.1 |
| white               | 4949                   | 12020                 | 623    | >21.8 |
| v                   | 655                    | 1596                  | 117    | >18.7 |
| v                   | 5359                   | 5559                  | 197    | >19.5 |
| b                   | 581                    | 1693                  | 114    | >20.2 |
| b                   | 6179                   | 11579                 | 906    | >21.3 |
| UFC                 | 325                    | 575                   | 246    | >20.3 |
| u                   | 325                    | 1671                  | 343    | >20.2 |
| u                   | 5974                   | 18261                 | 1072   | >21.1 |
| w1                  | 704                    | 1646                  | 97     | >19.8 |
| w1                  | 5769                   | 17356                 | 1082   | >21.1 |
| m2                  | 680                    | 1621                  | 117    | >20.0 |
| m2                  | 5564                   | 5764                  | 197    | >19.8 |
| w2                  | 630                    | 1572                  | 117    | >20.6 |
| w2                  | 5154                   | 5354                  | 197    | >20.2 |

Table 3. UVOT observations reported by Chester and Gompertz (GCN Circ. <u>14715</u>). The start and stop times of the exposures are given in seconds since the BAT trigger. The preliminary  $3-\sigma$  upper limits are given. No correction has been made for extinction in the Milky Way.

May 31, 2013