Swift Observations of GRB 140302A

C. Pagani (U. Leicester), J.P. Osborne (U. Leicester) and M.H. Siegel (PSU) for the Swift team

1. Introduction

At 08:12:58 UT, the Swift Burst Alert Telescope (BAT) triggered and located GRB 140302A (trigger=589685) (Pagani *et al.* GCN Circ. <u>15901</u>). Swift slewed immediately to the burst. At the time of the trigger, the initial BAT position was 87° from the Sun (5.9 hours West) and 101° from the 1%-illuminated Moon. **Table** 1 contains the best reported positions from Swift, and the latest XRT position can be viewed at http://www.swift.ac.uk/xrt_positions.

Elliott *et al.* (GCN Circ. <u>15903</u>) reported the position from GROND for the optical afterglow of this GRB. **Table 2** is a summary of GCN Circulars about this GRB from observatories other than Swift.

Standard analysis products for this burst are available at $\underline{\text{http://gcn.gsfc.nasa.gov}}$ /swift gnd ana.html.

2. BAT Observations and Analysis

As reported by Barthelmy *et al.* (GCN Circ. <u>15908</u>), the BAT ground-calculated position is RA, Dec = 253.862, -12.875 deg, which is RA(J2000) = $16^h55^m26.8^s$ Dec(J2000) = -12°52'29.8" with an uncertainty of 1.1 arcmin, (radius, sys+stat, 90% containment). The partial coding was 82%.

The mask-weighted light curve (**Figure 1**) shows a sharp rise starting at \sim T-0.1 s, peaking at \sim T+0.2 s, and a roughly exponential decay with several small peaks riding on top, finally returning to baseline at \sim T+190 s. T₉₀ (15-350 keV) is 87.5 \pm 11.4 s (estimated error including systematics).

The time-averaged spectrum from T-0.09 to T+106.25 s is best fit by a simple power-law model. The power law index of the time-averaged spectrum is 1.09 ± 0.09 . The fluence in the 15-150 keV band is $(2.7 \pm 0.1) \times 10^{-6}$ erg cm⁻². This fluence is larger than that of 69% of the long GRBs in the Second BAT GRB Catalog (Sakamoto *et al.* 2011). The 1-s peak photon flux measured from T-0.10 s in the 15-150 keV band is 1.7 ± 0.2 ph cm⁻² s⁻¹. All the quoted errors are at the 90% confidence level.

The results of the batgrbproduct analysis are available at http://gcn.gsfc.nasa.gov

/notices s/589685/BA/.

3. XRT Observations and Analysis

Analysis of the initial XRT data was reported by Osborne *et al.* (GCN Circ. <u>15909</u>). We have analysed 10 ks of XRT data for GRB 140302A, from 78 s to 57.5 ks after the BAT trigger. The data comprise 136 s in Windowed Timing (WT) mode with the remainder in Photon Counting (PC) mode. The enhanced XRT position for this burst was given by Osborne *et al.* (GCN Circ. <u>15902</u>).

The light curve (**Figure 2**) can be modelled with an initial power-law decay with an index of α =1.62 (+0.22, -0.23), followed by a break at T+183 s to an α of 4.2 (+3.3, -0.4) and a second break at T+388 s to an α of 1.48 (+0.20, -0.16).

A spectrum formed from the WT mode data can be fitted with an absorbed power-law with a photon spectral index of 1.08 (+0.16, -0.15). The best-fitting absorption column is 3.2 (+1.0, -0.9) x 10^{21} cm⁻², in excess of the Galactic value of 1.5 x 10^{21} cm⁻² (Kalberla *et al.* 2005). The counts to observed (unabsorbed) 0.3-10 keV flux conversion factor deduced from this spectrum is 6.8 x 10^{-11} (7.7 x 10^{-11}) erg cm⁻² count⁻¹.

A summary of the WT-mode spectrum is thus:

Total column: $3.2 (+1.0, -0.9) \times 10^{21} \text{ cm}^{-2}$

Galactic foreground: 1.5 x 10²¹ cm⁻²

Excess significance: 3.2σ

Photon index: 1.08 (+0.16, -0.15)

The results of the XRT team automatic analysis are available at http://www.swift.ac.uk/xrt products/00589685.

4. UVOT Observations and Analysis

The Swift/UVOT began settled observations of the field of GRB 140302A 80 s after the BAT trigger (Siegel and Pagani GCN Circ. 15912). No optical afterglow consistent with the optical position (Elliott *et al.* GCN Circ. 15903) is detected in the initial UVOT exposures. **Table 3** gives preliminary magnitudes using the UVOT photometric system (Breeveld *et al.* 2011, AIP Conf. Proc., 1358, 373). No correction has been made for the expected extinction in the Milky Way corresponding to a reddening of E_{B-V} of 0.52 mag. in the direction of the GRB (Schlegel *et al.* 1998).

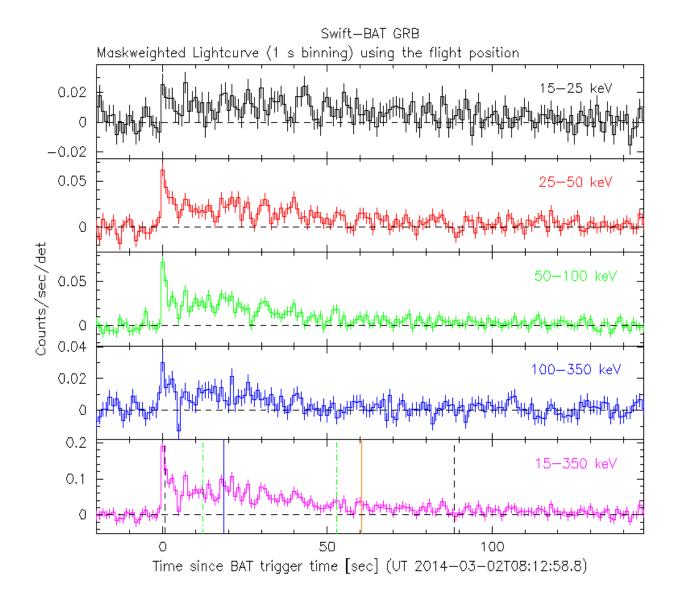


Figure 1. The BAT mask-weighted light curve in the four individual and total energy bands. The units are counts s⁻¹ illuminated-detector⁻¹. The verticle lines correspond to following: green dotted lines are T50 interval, black dotted lines are T90 interval, blue solid line(s) is a spacecraft slew start time, and orange solid line(s) is a spacecraft slew end time.

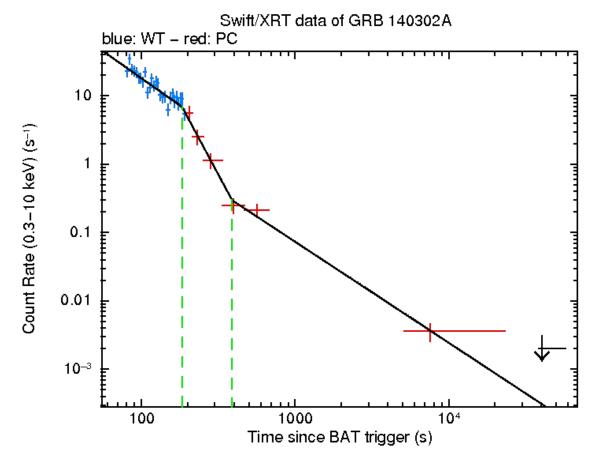


Figure 2. The XRT light curve.

RA (J2000)	Dec (J2000)	Error	Note	Reference
16 ^h 55 ^m 26.09 ^s	-12°52'41.6"	2.3"	XRT-final	<u>UKSSDC</u>
16 ^h 55 ^m 26.09 ^s	-12°52'41.6"	2.3"	XRT-enhanced	Osborne <i>et al.</i> GCN Circ. 15907
16 ^h 55 ^m 26.8 ^s	-12°52'29.8"	1.1'		Barthelmy <i>et al.</i> GCN Circ. 15908

Table 1. Positions from the Swift instruments.

Band	LAtithors	GCN Circ.	Subject	Observatory	Notes
Optical	Elliott et al.	<u>15903</u>	GROND afterglow candidate	GROND	detection
Optical	Kuroda et al.	<u>15911</u>	, ,	MITSuME Okayama	upper limits
Gamma-ray	Fitzpatrick	<u>15910</u>	Fermi GBM detection	Fermi GBM	E _{peak} =462±53 keV Fluence=1±0.05x10 ⁻⁵ erg cm ⁻² (75 th percentile for long GRBs)

Table 2. Summary of GCN Circulars from other observatories sorted by band and then circular number.

Filter	$T_{start}(s)$	$T_{stop}(s)$	Exp(s)	Mag
white (fc)	80	230	147	>20.5
white	80	593	167	>20.6
white	10575	11481	590	>21.1
v	624	643	19	>18.3
v	16940	17847	590	>19.4
b	549	569	19	>19.3
b	9662	10569	590	>20.5
u (fc)	293	543	246	>19.7
uvw1	672	692	19	>19.0
uvm2	17853	17993	137	>18.9
uvw2	11487	12232	732	>20.2

Table 3. UVOT observations reported by Siegel and Pagani (GCN Circ. $\underline{15912}$). The start and stop times of the exposures are given in seconds since the BAT trigger. The preliminary 3- σ upper limits are given. No correction has been made for extinction in the Milky Way.