# **Swift Observations of GRB 140419A**

F.E. Marshall (NASA/GSFC), A. Maselli (INAF-IASFPA) and N.P.M. Kuin (MSSL-UCL) for the Swift team

## 1. Introduction

At 04:06:51 UT, the Swift Burst Alert Telescope (BAT) triggered and located GRB 140419A (trigger=596426) (Marshall *et al.* GCN Circ. <u>16118</u>). Swift slewed immediately to the burst. At the time of the trigger, the initial BAT position was 89° from the Sun (6.7 hours East) and 131° from the 83%-illuminated Moon. **Table 1** contains the best reported positions from Swift, and the latest XRT position can be viewed at <u>http://www.swift.ac.uk/xrt positions</u>.

Marshall *et al.* (GCN Circ. <u>16118</u>) reported the discovery with UVOT of an optical afterglow. Zheng *et al.* (GCN Circ. <u>16119</u>) reported the position from KAIT for the optical afterglow of this GRB. Tanvir *et al.* (GCN Circ. <u>16125</u>) determined a redshift of 3.956 from Gemini. **Table 2** is a summary of GCN Circulars about this GRB from observatories other than Swift.

Standard analysis products for this burst are available at <u>http://gcn.gsfc.nasa.gov/swift\_gnd\_ana.html</u>.

#### 2. BAT Observations and Analysis

As reported by Baumgartner *et al.* (GCN Circ. <u>16127</u>), the BAT ground-calculated position is RA, Dec = 127.001, 46.234 deg, which is RA (J2000) =  $08^{h}28^{m}00.4^{s}$  Dec (J2000) =  $+46^{\circ}14'03.7''$  with an uncertainty of 1.0 arcmin, (radius, sys+stat, 90% containment). The partial coding was 33%.

The mask-weighted light curve (**Figure 1**) shows two slightly overlapping clusters of peaks, starting at  $\sim$ T-10 s, peaking at  $\sim$ T+10 and  $\sim$ T+51 s, and ending at  $\sim$ T+220 s. T<sub>90</sub> (15-350 keV) is 94.7 ± 11.0 s (estimated error including systematics).

The time-averaged spectrum from T-8.69 to T+222.32 s is best fit by a simple powerlaw model. The power law index of the time-averaged spectrum is  $1.21 \pm 0.04$ . The fluence in the 15-150 keV band is  $1.59 \pm 0.03 \times 10^{-5}$  erg cm<sup>-2</sup>. This fluence is larger than that of 96% of the long GRBs in the Second BAT GRB Catalog (Sakamoto *et al.* 2011). The 1-s peak photon flux measured from T+51.42 s in the 15-150 keV band is  $4.9 \pm 0.2$  ph cm<sup>-2</sup> s<sup>-1</sup>. All the quoted errors are at the 90% confidence level. The results of the batgrbproduct analysis are available at <u>http://gcn.gsfc.nasa.gov/notices\_s/596426/BA/</u>.

## 3. XRT Observations and Analysis

Maselli *et al.* (GCN Circ. <u>16128</u>) reported the analysis of the initial XRT data. We have analyzed 92 ks of XRT data for GRB 140419A, from 79.9 s to 1297.8 ks after the BAT trigger. The data comprise 1.4 ks in Windowed Timing (WT) mode (the first 5 s were taken while Swift was slewing) with the remainder in Photon Counting (PC) mode. The enhanced XRT position for this burst was given by Osborne *et al.* (GCN Circ. <u>16124</u>).

The late-time light curve (**Figure 2**) (from T+5.4 ks) can be modeled with a series of power-law decays. The initial decay index is  $\alpha$ =1.58 (+0.21, -0.16). At T+12.0 ks the decay flattens to an  $\alpha$  of 0.96 (+0.14, -0.49) before breaking again at T+28.6 ks to a final decay with index  $\alpha$ =1.55 ± 0.07.

A spectrum formed from the WT mode data can be fitted with an absorbed power-law with a photon spectral index of 1.798 (+0.029, -0.017). The PC mode spectrum has a photon index of 1.890 (+0.056, -0.054) and a best-fitting absorption column of 1.42 (+0.59, -0.56) x  $10^{22}$  cm<sup>-2</sup> at a redshift of 3.956, in addition to the Galactic value of 3.9 x  $10^{20}$  cm<sup>-2</sup> (Willingale *et al.* 2013). The counts to observed (unabsorbed) 0.3-10 keV flux conversion factor deduced from this spectrum is 3.5 x  $10^{-11}$  (4.0 x  $10^{-11}$ ) erg cm<sup>-2</sup> count<sup>-1</sup>.

A summary of the PC-mode spectrum is thus: Galactic foreground:  $3.9 \times 10^{20} \text{ cm}^{-2}$ Intrinsic column:  $1.42 \ (+0.59, -0.56) \times 10^{22} \text{ cm}^{-2}$  at z=3.956 Photon index:  $1.890 \ (+0.056, -0.054)$ 

The results of the XRT team automatic analysis are available at <u>http://www.swift.ac.uk/xrt\_products/00596426</u>.

# 4. UVOT Observations and Analysis

The Swift/UVOT began settled observations of the field of GRB 140419A 97 s after the BAT trigger (Kuin and Marshall GCN Circ. <u>16130</u>). A source consistent with the XRT position is detected in the initial UVOT exposures. **Table 3** gives preliminary magnitudes using the UVOT photometric system (Breeveld *et al.* 2011, AIP Conf. Proc., 1358, 373). No correction has been made for the expected extinction in the

Milky Way corresponding to a reddening of  $E_{B-V}$  of 0.03 mag. in the direction of the GRB (Schlegel *et al.* 1998).



Figure 1. The BAT mask-weighted light curve in the four individual and total energy bands. The units are counts  $s^{-1}$  illuminated-detector<sup>-1</sup>.



Figure 2. The XRT light curve. Data from the crosshatched region are not included in the fit.

| RA (J2000)                                         | Dec (J2000)  | Error | Note             | Reference                                         |
|----------------------------------------------------|--------------|-------|------------------|---------------------------------------------------|
| 08 <sup>h</sup> 27 <sup>m</sup> 57.56 <sup>s</sup> | +46°14'25.3" | 0.50" | UVOT-refined     | Kuin and Marshall GCN Circ.<br><u>16130</u>       |
| 08h27m57.51s                                       | +46°14'24.1" | 1.4"  | XRT-final        | UKSSDC                                            |
| 08 <sup>h</sup> 27 <sup>m</sup> 57.53 <sup>s</sup> | +46°14'24.3" | 1.5"  | XRT-<br>enhanced | Osborne <i>et al</i> . GCN Circ. <u>16124</u>     |
| 08 <sup>h</sup> 28 <sup>m</sup> 00.4 <sup>s</sup>  | +46°14'03.7" | 1.0'  | BAT-refined      | Baumgartner <i>et al</i> . GCN Circ. <u>16127</u> |

Table 1. Positions from the Swift instruments.

| Band    | Authors                   | GCN<br>Circ. | Subject                                            | Observatory             | Notes     |
|---------|---------------------------|--------------|----------------------------------------------------|-------------------------|-----------|
| Optical | Zheng et al.              | <u>16119</u> | KAIT optical candidate                             | KAIT                    | detection |
| Optical | Guver <i>et al</i> .      | <u>16120</u> | ROTSE-III<br>Detection of Optical<br>Counterpart   | ROTSE                   | detection |
| Optical | Butler <i>et al</i> .     | 16121        | RATIR Optical and<br>NIR Observations              | RATIR                   | detection |
| Optical | Tanvir <i>et al</i> .     | 16125        | Gemini-N redshift                                  | Gemini                  | redshift  |
| Optical | Hentunen <i>et al</i> .   | 16126        | T24 optical observations                           | iTelescope              | detection |
| Optical | Cenko and<br>Perley       | 16129        | P60 Observations                                   | Palomar 60-<br>inch     | detection |
| Optical | Kuroda <i>et al</i> .     | <u>16131</u> | MITSuME<br>Okayama Optical<br>Observation          | MITSuME<br>Okayama      | detection |
| Optical | Kuroda <i>et al</i> .     | <u>16132</u> | MITSuME<br>Ishigakijima<br>Optical Observation     | MITSuME<br>Ishigakijima | detection |
| Optical | Pandey and<br>Kumar       | <u>16133</u> | Optical<br>Observations                            | Nainital                | detection |
| Optical | Littlejohns <i>et</i> al. | <u>16136</u> | Continued RATIR<br>Optical and NIR<br>Observations | RATIR                   | detection |
| Optical | Zheng et al.              | 16137        | KAIT Refined<br>Analysis                           | KAIT                    | detection |
| Optical | Xu et al.                 | 16138        | NOT optical observations                           | NOT                     |           |
| Optical | Littlejohns <i>et</i> al. | <u>16139</u> | Continued RATIR<br>Optical and NIR<br>Observations | RATIR                   | detection |
| Optical | Xu                        | <u>16140</u> | Refined NOT<br>photometry                          | NOT                     |           |

| Optical       | Volnova <i>et</i><br>al. | 16141        | Mondy optical observations              | Mondy      | detection                                                                                                                 |
|---------------|--------------------------|--------------|-----------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------|
| Optical       | Choi <i>et al</i> .      | 16149        | LOAO R-band<br>observations             | LOAO       |                                                                                                                           |
| Optical       | Volnova <i>et</i><br>al. | 16168        | Continued Mondy<br>optical observations | Mondy      | detection                                                                                                                 |
| Radio         | Perley                   | 16122        | CARMA early<br>3mm detection            | CARMA      | detection                                                                                                                 |
| Gamma-<br>ray | Golenetskii<br>et al.    | <u>16134</u> | Konus-Wind<br>observation               | Konus-Wind | $   E_{peak} = 293 \\   \pm 84 \text{ keV} \\   Fluence = 5.8 \\   (-1.9, +2.8) \times 10^{-5} \\   erg \text{ cm}^{-2} $ |

Table 2. Summary of GCN Circulars from other observatories sorted by band and then circular number.

| Filter | T <sub>start</sub> (s) | T <sub>stop</sub> (s) | Exp(s) | Mag            |
|--------|------------------------|-----------------------|--------|----------------|
| white  | 97                     | 246                   | 147    | $16.2 \pm 0.2$ |
| v      | 638                    | 658                   | 19     | $16.1 \pm 0.2$ |
| b      | 564                    | 756                   | 39     | $18.4 \pm 0.2$ |
| u      | 309                    | 2003                  | 362    | >21.0          |
| w1     | 687                    | 707                   | 19     | >18.1          |

Table 3. UVOT observations reported by Kuin and Marshall (GCN Circ. <u>16130</u>). The start and stop times of the exposures are given in seconds since the BAT trigger. The preliminary detections and 3- $\sigma$  upper limits are given. No correction has been made for extinction in the Milky Way.

May 5, 2014