Swift Observation of GRB 070621

B. Sbarufatti (INAF-IASFPA), S. D. Barthelmy (GSFC), S. T. Holland (CRESST/GSFC/USRA), D.N. Burrows (PSU), P. Roming (PSU), N. Gehrels (GSFC), P. Romano (Univ. Bicocca & INAF-OAB), C. Guidorzi (Univ. Bicocca & INAF-OAB), A. Moretti (INAF-OAB) for the Swift

Team

0 Updates

• XRT paragraph and light curve updated using the whole dataset for this burst.

1 Introduction

BAT triggered on GRB 070621 at 23:17:39.85 UT (Trigger 282808) (Sbarufatti, et al., GCN Circ. 6560). This was a 1.024 s rate-trigger on a long burst with $T_{90} = 33 \ s$. Swift slewed to this burst immediately and XRT began follow-up observations at $T + 111 \ s$, and UVOT at $T + 120 \ s$. Our best position is the UVOT-enhanced XRT location $RA(J2000) = 323.79225 \ deg \ (21^h 35^m 10.14^s)$, $Dec(J2000) = -24.8175 \ deg \ (-24^d 49' 03.1'')$ with an error radius of 2.0 arcsec (90% confidence, including boresight uncertainties). No optical counterpart was detected by UVOT. Malesani et al.(GCN Circ. 6565) reported a possibly extended source near the location of GRB 070621, but its position falls outside the XRT refined error circle.

2 BAT Observation and Analysis

Using the data set from T-240 to T+962~s, further analysis of BAT GRB 070621 has been performed by the Swift team (Fenimore, *et al.*, *GCN Circ.* 6571). The BAT ground-calculated position is $RA(J2000) = 323.806~deg~(21^{h}35^{m}13.5^{s})$, $Dec(J2000) = -24.809~deg~(-24^{d}48'32'') \pm 1.0~arcmin$, (radius, systematic and statistical, 90% containment). The partial coding was 31%.

The mask-weighted light curves (Fig.1) show several overlapping peaks starting at $\sim T-20$ and ending at $\sim T+40 \ s$. There is a low-significance bump ($\sim 3\sigma$) from T+70s to $T+105 \ s$. $T_{90}(15-350 \ keV)$ is $33.3 \pm 1.0 \ s$ (estimated error including systematics).

The time-averaged spectrum from T - 5.2 to T + 36.4 s is best fitted by a simple power law model. This fit gives a photon index of 1.57 ± 0.06 . For this model the total fluence in the $15 - 150 \ keV$ band is $(4.3 \pm 0.1) \times 10^{-6} \ ergs \ cm^{-2}$ and the 1-s peak flux measured from $T + 21.56 \ s$ in the $15 - 150 \ keV$ band is $2.3 \pm 0.3 \ ph \ cm^{-2}s^{-1}$. All the quoted errors are at the 90% confidence level.

3 XRT Observations and Analysis

Using 746 s of overlapping data in XRT Photon Counting mode and UVOT V-band we obtained a refined position of $RA(J2000) = 323.79225 \ deg \ (21^h 35^m 10.14^s), \ Dec(J2000) = -24.8175 \ deg \ (-24^d 49' 03.1'') \pm 2.0 \ arcsec \ (90\% \ confidence \ radius, \ including \ boresight \ uncertainties). This position is within 4.8 \ arcsec \ of the initial XRT position.$

XRT observed the afterglow for 105 ks, distributed between T + 111s and T + 900ks. The $0.3 - 10 \ keV$ light curve (Fig.2) shows an initial steep decline with a slope of 3.8 ± 0.1 , followed by a shallow slope of 0.91 ± 0.04 , beginning at $T + 380 \pm 10 \ s$. Around T + 80ks, there is a second break, after which the light curve decays with index 1.4 ± 0.2 . The source was last detected at flux $2.2 \times 10^{-14} ergs \ cm^{-2}s^{-1}$.

The first two segments of the X-ray lightcurve up to T + 5ks (150 s in Window Timing mode, 1.3 ks in Photon Counting mode) can be modeled with a single absorbed power-law with photon index of 2.5 ± 0.3 . The $N_{\rm H}$ column density is $(4.4 \pm 0.9) \times 10^{21} \ cm^{-2}$, significantly in excess with respect to the galactic value in the direction of the burst, $3.5 \times 10^{20} \ cm^{-2}$. The average observed (unabsorbed) flux over $0.3 - 10 \ keV$ for this spectrum is $8.4 \times 10^{-10} \ (2.2 \times 10^{-9}) \ ergs \ cm^{-2}s^{-1}$ for the WT part and $1.4 \times 10^{-11} \ (3.6 \times 10^{-11}) \ ergs \ cm^{-2}s^{-1}$ for the PC part.

4 UVOT Observation and Analysis

The UVOT began observing the field of GRB 070621 at 23:19:39.85 UT, 120 s after the initial BAT trigger (Holland *et al.*, *GCN Circ.* 6573). No new source was detected within the XRT error circle in the white and V finding exposures, or in the co-added images in any filter down to 3-sigma magnitude. Upper limits are summarized in Table 1. These upper limits are not corrected for the Galactic extinction corresponding to a reddening of $E_{B-V} = 0.05 \text{ mag}$.

Filter	Start	Stop	Exposure	$3\text{-}\mathrm{Sigma~UL}$
V	226	1360	806	20.2
В	702	714	10	18.6
U	680	4799	88	19.7
UVW1	656	4744	236	20.3
UVM2	631	802	38	18.8
UVW2	733	752	19	18.1
White	120	954	204	21.3

Table 1: Magnitude limits from UVOT observations.

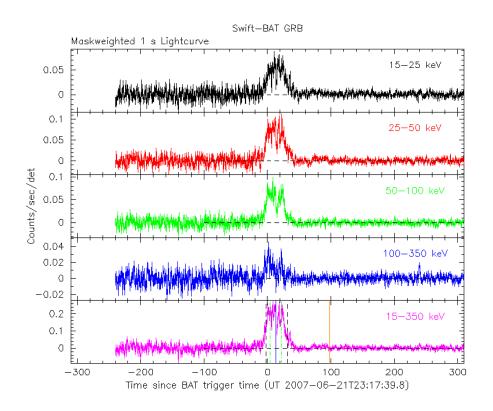


Figure 1: BAT Light curve. The mask-weighted light curve in the 4 individual plus total energy bands. The units are counts/s/illuminated-detector and T_0 is 23:17:39.85 UT.

Figure 2: XRT Lightcurve. Flux $(ergs \ cm^{-2}s^{-1})$ in the 0.3-10 keV band: Window Timing mode (blue), Photon Counting mode (red). The approximate conversion is $1 \ count/s = \sim 8.6 \times 10^{-11} \ ergs \ cm^{-2}s^{-1}$.