Swift Observations of GRB 070911

H. A. Krimm (CRESST & NASA GSFC/USRA), G. Stratta (ASDC), S. D. Barthelmy (NASA GSFC), D. N. Burrows (PSU), N. Gehrels (GSFC), P. W. A. Roming (GSFC) for the Swift Team

1 Introduction

BAT triggered on GRB 070911 at 05:57:44.47 UT (trigger=290624) (Krimm, et al., GCN Circ. 6777). This was a 1.024 sec rate-trigger on a long burst with $T_{90} = 162$ sec. Because the Swift operations team was still in the process of resuming normal operations, there were no automatic follow-up observations by the XRT or UVOT. Following a commanded slew, XRT began follow-up observations at T + 14.5 hours. UVOT did not observe this burst. Our best position is the XRT location RA(J2000) = 25.8094° (01h43m14.26s), Dec(J2000) = -33.4842° ($-33^{\circ}29'03.1^{\circ}$) with an error of 6 arcsec (90% confidence, including boresight uncertainties).

2 BAT Observation and Analysis

Using the data set from T-299 to T+300 sec, further analysis of BAT GRB 070911 has been performed by Swift-BAT team (Palmer, et al., GCN Circ. 6778). The BAT ground-calculated position is $RA(J2000) = 25.819^{\circ}$ (1h43m16.5s), $Dec(J2000) = -33.484^{\circ}$ (-33d29'3") \pm 1.5 arcmin, (radius, systematic and statistical, 90% containment). The partial coding was 88% (the bore sight angle was 21.24°).

The mask tagged light curve (Fig.1) starts to rise at around T-70 sec and continues above baseline until T+160 sec. The burst contains multiple strong peaks in a cluster from T-5 to T+55 sec, then a drop in flux and another cluster of peaks from T+85 to T+145 sec. The first cluster of peaks has a harder spectrum than the second. $T_{90}(15-350keV)$ is 162 ± 10 sec (estimated error including systematics).

The time-averaged spectrum from T-73.0 to T+158.8 sec is best fit by a simple power-law model. The power law index of the time-averaged spectrum is 1.72 ± 0.04 . The fluence in the 15-150 keV band is $1.2 \pm 0.02 \times 10^{-5}$ erg cm⁻². The 1-sec peak photon flux measured from T+36.13 sec in the 15-150 keV band is 3.9 ± 0.2 ph cm⁻² sec⁻¹. All the quoted errors are at the 90% confidence level.

3 XRT Observations and Analysis

Using the data from the first nine orbits of XRT data of GRB 070911 (6.8 ksec in Photon Counting mode), the refined XRT position is $RA(J2000) = 25.8094^{\circ}$ (01h43m14.26s), $Dec(J2000) = -33.4842^{\circ}$ (-33°29′03.1") \pm 6ãrcsec (90% confidence, including boresight uncertainties).

The 0.3-10 keV light curve (Fig.2) shows a decline with a slope of 1.47 ± 0.04 . Fitting the data from T+300 ks with a simple power law model we find a steeper decay index $\alpha=-1.9\pm0.2$.

The 0.3-10.0 keV X-ray spectrum with 6.8 ks of integration time, is well fit by an absorbed power law with a photon index of 2.2 ± 0.3 and a total column density of $N_H = (1.3\pm0.5)\times10^{21}$ cm⁻²($\chi^2/\text{dof} = 0.8/6$). The Galactic column density in the direction of the source is 2.4×10^{20} cm⁻² (Dickey & Lockmann 1990). The 0.3-10 keV observed flux is 1.9×10^{-12} erg cm⁻² s⁻¹ (unabsorbed: 2.8×10^{-12} erg cm⁻² s⁻¹). We note that the XRT CCD is now operating with a raised substrate voltage, and thus has a different gain. The new gain is not yet well calibrated, and so our spectral results are only preliminary.

4 UVOT Observation and Analysis

Since the UVOT was not operating at the time of this burst, there are no UVOT observations.

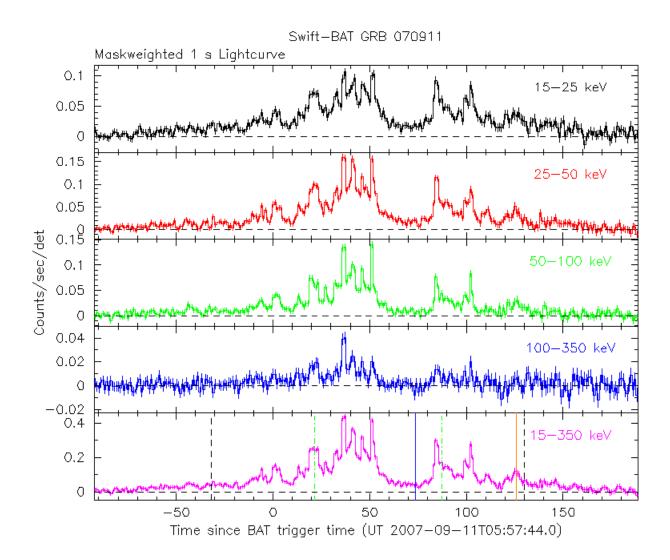


Figure 1: BAT Light curve. The mask-weighted light curve in the 4 individual plus total energy bands. The units are counts/sec/illuminated-detector (note illum-det = $0.16 \mathrm{cm}^2$).

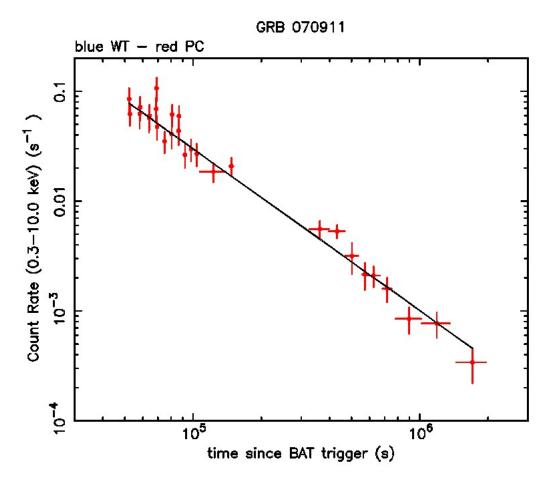


Figure 2: XRT Lightcurve. Counts/sec in the 0.3-10 keV band in the Photon Counting mode (red).